Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.130
Filtrar
1.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 433-440, 2024 Mar 20.
Artículo en Chino | MEDLINE | ID: mdl-38645856

RESUMEN

Objective: Port-wine stains are a kind of dermatological disease of congenital capillary malformation. Based on the biological characteristics of port-wine stains and the advantages of microneedle transdermal administration, we intend to construct a nanodrug co-loaded with rapamycin (RPM), an anti-angiogenesis drug, and photochlor (HPPH), a photosensitizer, and integrate the nanodrug with dissolvable microneedles (MN) to achieve anti-angiogenesis and photodynamic combination therapy for port-wine stains. Methods: First, RPM and HPPH co-loaded nanoparticles (RPM-HPPH NP) were prepared by the emulsification solvent-volatilization method, and its ability to generate reactive oxygen species (ROS) was investigated under 660 nm laser irradiation. Mouse hemangioendothelioma endothelial cells (EOMA) were used as the subjects of the study. The cellular uptake behaviors were examined by fluorescence microscopy and flow cytometry. The cytotoxicity effects of RPM-HPPH NP with or without 660 nm laser irradiation on EOMA cells were examined by MTT assays (with free RPM serving as the control). Then, hyaluronic acid (HA) dissolvable microneedles loaded with RPM-HPPH NP (RPM-HPPH NP@HA MN) were obtained by compounding the nanodrug with HA dissolvable microneedle system through the molding method. The morphological characteristics and mechanical properties of RPM-HPPH NP@HA MN were investigated by scanning electron microscope and electronic universal testing machine. The penetration ability of RPM-HPPH NP@HA MN on the skin of nude mice was evaluated by trypan blue staining and H&E staining experiment. Results: The RPM-HPPH NP prepared in the study had a particle size of 150 nm and generated large amounts of ROS under laser irradiation. At the cellular level, RPM-HPPH NP was taken up by EOMA cells in a time-dependent manner. The cytotoxicity of RPM-HPPH NP was higher than that of free RPM with or without laser irradiation. Under laser irradiation, RPM-HPPH NP exhibited stronger cytotoxic effects and the difference was statistically significant (P<0.05). The height of the needle tip of RPM-HPPH NP@HA MN was 600 µm and the mechanical property of a single needle was 0.75048 N. Trypan blue staining and HE staining showed that pressing on the microneedles could produce pores on the skin surface and penetration of the stratum corneum. Conclusion: RPM-HPPH NP@HA MN can deliver RPM-HPPH NP percutaneously to the lesion tissue and realize the synergistic treatment of port-wine stains with anti-angiogenic therapy and photodynamic therapy, providing a new strategy for the construction of nanodrug-loaded microneedle delivery system and the clinical treatment of port-wine stains.


Asunto(s)
Nanopartículas , Agujas , Mancha Vino de Oporto , Sirolimus , Animales , Ratones , Nanopartículas/química , Mancha Vino de Oporto/tratamiento farmacológico , Sirolimus/administración & dosificación , Fármacos Fotosensibilizantes/administración & dosificación , Administración Cutánea , Fotoquimioterapia/métodos , Especies Reactivas de Oxígeno/metabolismo , Células Endoteliales/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Inhibidores de la Angiogénesis/administración & dosificación , Hemangioendotelioma/tratamiento farmacológico
2.
Sci Rep ; 14(1): 9137, 2024 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644422

RESUMEN

To investigate the therapeutic potential of photodynamic therapy (PDT) for malignant gliomas arising in unresectable sites, we investigated the effect of tumor tissue damage by interstitial PDT (i-PDT) using talaporfin sodium (TPS) in a mouse glioma model in which C6 glioma cells were implanted subcutaneously. A kinetic study of TPS demonstrated that a dose of 10 mg/kg and 90 min after administration was appropriate dose and timing for i-PDT. Performing i-PDT using a small-diameter plastic optical fiber demonstrated that an irradiation energy density of 100 J/cm2 or higher was required to achieve therapeutic effects over the entire tumor tissue. The tissue damage induced apoptosis in the area close to the light source, whereas vascular effects, such as fibrin thrombus formation occurred in the area slightly distant from the light source. Furthermore, when irradiating at the same energy density, irradiation at a lower power density for a longer period of time was more effective than irradiation at a higher power density for a shorter time. When performing i-PDT, it is important to consider the rate of delivery of the irradiation light into the tumor tissue and to set irradiation conditions that achieve an optimal balance between cytotoxic and vascular effects.


Asunto(s)
Glioma , Láseres de Semiconductores , Fotoquimioterapia , Fármacos Fotosensibilizantes , Porfirinas , Animales , Fotoquimioterapia/métodos , Glioma/tratamiento farmacológico , Glioma/patología , Porfirinas/farmacología , Porfirinas/uso terapéutico , Ratones , Láseres de Semiconductores/uso terapéutico , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Modelos Animales de Enfermedad , Aloinjertos , Apoptosis/efectos de los fármacos , Masculino
3.
Front Immunol ; 15: 1375767, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646546

RESUMEN

Cancer immunotherapy has made tremendous advancements in treating various malignancies. The biggest hurdle to successful immunotherapy would be the immunosuppressive tumor microenvironment (TME) and low immunogenicity of cancer cells. To make immunotherapy successful, the 'cold' TME must be converted to 'hot' immunostimulatory status to activate residual host immune responses. To this end, the immunosuppressive equilibrium in TME should be broken, and immunogenic cancer cell death ought to be induced to stimulate tumor-killing immune cells appropriately. Photodynamic therapy (PDT) is an efficient way of inducing immunogenic cell death (ICD) of cancer cells and disrupting immune-restrictive tumor tissues. PDT would trigger a chain reaction that would make the TME 'hot' and have ICD-induced tumor antigens presented to immune cells. In principle, the strategic combination of PDT and immunotherapy would synergize to enhance therapeutic outcomes in many intractable tumors. Novel technologies employing nanocarriers were developed to deliver photosensitizers and immunotherapeutic to TME efficiently. New-generation nanomedicines have been developed for PDT immunotherapy in recent years, which will accelerate clinical applications.


Asunto(s)
Inmunoterapia , Nanopartículas , Neoplasias , Fotoquimioterapia , Fármacos Fotosensibilizantes , Microambiente Tumoral , Fotoquimioterapia/métodos , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos , Humanos , Neoplasias/terapia , Neoplasias/inmunología , Inmunoterapia/métodos , Animales , Fármacos Fotosensibilizantes/uso terapéutico , Terapia Combinada , Nanomedicina/métodos
4.
Biochem Biophys Res Commun ; 710: 149835, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38574457

RESUMEN

We report application of the fluorescence lifetime imaging microscopy (FLIM) for analysis of distributions of intracellular acidity using a chlorin-e6 based photosensitizer Radachlorin. An almost two-fold increase of the photosensitizer fluorescence lifetime in alkaline microenvironments as compared to acidic ones allowed for clear distinguishing between acidic and alkaline intracellular structures. Clusterization of a phasor plot calculated from fits of the FLIM raw data by two Gaussian distributions provided accurate automatic segmentation of lysosomes featuring acidic contents. The approach was validated in colocalization experiments with LysoTracker fluorescence in living cells of four established lines. The dependence of photosensitizer fluorescence lifetime on microenvironment acidity allowed for estimation of pH inside the cells, except for the nuclei, where photosensitizer does not penetrate. The developed method is promising for combined application of the photosensitizer for both photodynamic treatment and diagnostics.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Porfirinas , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fotoquimioterapia/métodos , Lisosomas , Concentración de Iones de Hidrógeno , Combinación de Medicamentos
5.
J Photochem Photobiol B ; 254: 112903, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608335

RESUMEN

This first-in-its-class proof-of-concept study explored the use of bionanovesicles for the delivery of photosensitizer into cultured cholangiocarcinoma cells and subsequent treatment by photodynamic therapy (PDT). Two types of bionanovesicles were prepared: cellular vesicles (CVs) were fabricated by sonication-mediated nanosizing of cholangiocarcinoma (TFK-1) cells, whereas cell membrane vesicles (CMVs) were produced by TFK-1 cell and organelle membrane isolation and subsequent nanovesicularization by sonication. The bionanovesicles were loaded with zinc phthalocyanine (ZnPC). The CVs and CMVs were characterized (size, polydispersity index, zeta potential, stability, ZnPC encapsulation efficiency, spectral properties) and assayed for tumor (TFK-1) cell association and uptake (flow cytometry, confocal microscopy), intracellular ZnPC distribution (confocal microscopy), dark toxicity (MTS assay), and PDT efficacy (MTS assay). The mean ±â€¯SD diameter, polydispersity index, and zeta potential were 134 ±â€¯1 nm, -16.1 ±â€¯0.9, and 0.220 ±â€¯0.013, respectively, for CVs and 172 ±â€¯3 nm, -16.4 ±â€¯1.1, and 0.167 ±â€¯0.022, respectively, for CMVs. Cold storage for 1 wk and incorporation of ZnPC increased bionanovesicular diameter slightly but size remained within the recommended range for in vivo application (136-220 nm). ZnPC was incorporated into CVs and CMVs at an optimal photosensitizer:lipid molar ratio of 0.006 and 0.01, respectively. Both bionanovesicles were avidly taken up by TFK-1 cells, resulting in homogenous intracellular ZnPC dispersion. Photosensitization of TFK-1 cells did not cause dark toxicity, while illumination at 671 nm (35.3 J/cm2) produced LC50 values of 1.11 µM (CVs) and 0.51 µM (CMVs) at 24 h post-PDT, which is superior to most LC50 values generated in tumor cells photosensitized with liposomal ZnPC. In conclusion, CVs and CMVs constitute a potent photosensitizer platform with no inherent cytotoxicity and high PDT efficacy in vitro.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Compuestos Organometálicos , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Colangiocarcinoma/tratamiento farmacológico , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Conductos Biliares Intrahepáticos , Compuestos Organometálicos/farmacología , Compuestos de Zinc , Línea Celular Tumoral
6.
J Nanobiotechnology ; 22(1): 202, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658952

RESUMEN

Multi-modal combination therapy is regarded as a promising approach to cancer treatment. Combining chemotherapy and phototherapy is an essential multi-modal combination therapy endeavor. Ivermectin (IVM) is a potent antiparasitic agent identified as having potential antitumor properties. However, the fact that it induces protective autophagy while killing tumor cells poses a challenge to its further application. IR780 iodide (IR780) is a near-infrared (NIR) dye with outstanding photothermal therapy (PTT) and photodynamic therapy (PDT) effects. However, the hydrophobicity, instability, and low tumor uptake of IR780 limit its clinical applications. Here, we have structurally modified IR780 with hydroxychloroquine, an autophagy inhibitor, to synthesize a novel compound H780. H780 and IVM can form H780-IVM nanoparticles (H-I NPs) via self-assembly. Using hyaluronic acid (HA) to modify the H-I NPs, a novel nano-delivery system HA/H780-IVM nanoparticles (HA/H-I NPs) was synthesized for chemotherapy-phototherapy of colorectal cancer (CRC). Under NIR laser irradiation, HA/H-I NPs effectively overcame the limitations of IR780 and IVM and exhibited potent cytotoxicity. In vitro and in vivo experiment results showed that HA/H-I NPs exhibited excellent anti-CRC effects. Therefore, our study provides a novel strategy for CRC treatment that could enhance chemo-phototherapy by modulating autophagy.


Asunto(s)
Autofagia , Neoplasias Colorrectales , Reposicionamiento de Medicamentos , Ivermectina , Nanopartículas , Autofagia/efectos de los fármacos , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/terapia , Humanos , Ratones , Nanopartículas/química , Ivermectina/farmacología , Ivermectina/química , Línea Celular Tumoral , Indoles/química , Indoles/farmacología , Ratones Endogámicos BALB C , Ratones Desnudos , Fotoquimioterapia/métodos , Antineoplásicos/farmacología , Antineoplásicos/química , Fototerapia/métodos , Ácido Hialurónico/química , Hidroxicloroquina/farmacología , Hidroxicloroquina/química , Terapia Fototérmica/métodos
7.
Medicine (Baltimore) ; 103(16): e37855, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38640292

RESUMEN

RATIONALE: The bullous variant of central serous chorioretinopathy (CSC) is a severe form of chronic CSC. Patients with the bullous variant of CSC have an increased risk of experiencing multiple pigment epithelial detachments (PEDs) and retinal pigment epithelium (RPE) tears. Photodynamic therapy (PDT) is a treatment for the bullous variant of CSC. RPE tear is a possible postoperative complication of PDT for eyes with PEDs. To our knowledge, no cases of giant RPE tears following PDT for the bullous variant of CSC have been reported previously. This case report presents the first instance of a giant RPE tear after half-time PDT for the bullous variant of CSC, accompanied by a series of images depicting the tear development. PATIENT CONCERNS: A 63-year-old male patient presented with rapidly deteriorating vision in his left eye over a 3-month period. He also reported a previous episode of vision loss in his right eye 2 years prior. Best-corrected visual acuity (BCVA) in the left eye was 0.2. DIAGNOSIS: The right eye was diagnosed with chronic non-bullous CSC, while the left eye was diagnosed with the bullous variant of CSC with a large PED. INTERVENTIONS: Half-time PDT was administered to the left eye. OUTCOMES: One month after half-time PDT, a giant RPE tear exceeding 3 clock-hours in size was confirmed in the lower temporal quadrant of the left eye. Three months after the initial half-time PDT, a second half-time PDT was performed owing to recurrent retinal detachment. Two months after the second half-time PDT, the retinal detachment resolved, and BCVA improved to 0.4, 6 months after the second half-time PDT. LESSONS: In cases where the bullous variant of CSC is complicated by extensive PED, clinicians should consider the potential development of a giant RPE tear as a treatment complication.


Asunto(s)
Coriorretinopatía Serosa Central , Fotoquimioterapia , Desprendimiento de Retina , Perforaciones de la Retina , Masculino , Humanos , Persona de Mediana Edad , Coriorretinopatía Serosa Central/inducido químicamente , Coriorretinopatía Serosa Central/tratamiento farmacológico , Coriorretinopatía Serosa Central/complicaciones , Desprendimiento de Retina/etiología , Fotoquimioterapia/efectos adversos , Fotoquimioterapia/métodos , Agudeza Visual , Perforaciones de la Retina/cirugía , Perforaciones de la Retina/complicaciones , Angiografía con Fluoresceína , Pigmentos Retinianos/uso terapéutico , Tomografía de Coherencia Óptica , Fármacos Fotosensibilizantes/efectos adversos , Estudios Retrospectivos
8.
Opt Lett ; 49(5): 1369-1372, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427015

RESUMEN

Pump-probe-based photoacoustic tomography (PP-PAT) is an innovative and promising molecular imaging technique. In this study, we utilized PP-PAT for the first time, to the best of our knowledge, to monitor the dynamics of oxygen partial pressure (pO2) within murine tumors during photodynamic therapy (PDT) with methylene blue (MB). We developed, to our knowledge, a novel two-step fitting method to simultaneously map both the pO2 and the MB concentrations and implemented it with mexCuda to accelerate the pixel-wise-based calculation. The results demonstrated a penetration depth of up to 5 mm and revealed a significant decrease in pO2 during the PDT process, consistent with existing research findings. This study suggests that PP-PAT has the potential to become a valuable tool for intraoperative monitoring of PDT, thereby enhancing therapeutic efficacy.


Asunto(s)
Neoplasias , Fotoquimioterapia , Humanos , Ratones , Animales , Fotoquimioterapia/métodos , Presión Parcial , Tomografía Computarizada por Rayos X , Oxígeno , Azul de Metileno , Fármacos Fotosensibilizantes
9.
BMC Oral Health ; 24(1): 311, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454402

RESUMEN

BACKGROUND: This study was conducted to investigate the efficiency of periodontal ligament (PDL) stem cell-derived exosome-loaded Emodin (Emo@PDL-Exo) in antimicrobial photodynamic therapy (aPDT) on Streptococcus mutans and Lactobacillus acidophilus as the cariogenic bacteria. MATERIALS AND METHODS: After isolating and characterizing PDL-Exo, the study proceeded to prepare and verify the presence of Emo@PDL-Exo. The antimicrobial effect, anti-biofilm activity, and anti-metabolic potency of Emo, PDL-Exo, and Emo@PDL-Exo were then evaluated with and without irradiation of blue laser at a wavelength of 405 ± 10 nm with an output intensity of 150 mW/cm2 for a duration of 60 s. In addition, the study assessed the binding affinity of Emodin with GtfB and SlpA proteins using in silico molecular docking. Eventually, the study examined the generation of endogenous reactive oxygen species (ROS) and changes in the gene expression levels of gelE and sprE. RESULTS: The study found that using Emo@PDL-Exo-mediated aPDT resulted in a significant decrease in L. acidophilus and S. mutans by 4.90 ± 0.36 and 5.07 log10 CFU/mL, respectively (P < 0.05). The study found that using Emo@PDL-Exo for aPDT significantly reduced L. acidophilus and S. mutans biofilms by 44.7% and 50.4%, respectively, compared to untreated biofilms in the control group (P < 0.05). Additionally, the metabolic activity of L. acidophilus and S. mutans decreased by 58.3% and 71.2%, respectively (P < 0.05). The molecular docking analysis showed strong binding affinities of Emodin with SlpA and GtfB proteins, with docking scores of -7.4 and -8.2 kcal/mol, respectively. The study also found that the aPDT using Emo@PDL-Exo group resulted in the most significant reduction in gene expression of slpA and gtfB, with a decrease of 4.2- and 5.6-folds, respectively, compared to the control group (P < 0.05), likely due to the increased generation of endogenous ROS. DISCUSSION: The study showed that aPDT using Emo@PDL-Exo can effectively reduce the cell viability, biofilm activity, and metabolic potency of S. mutans and L. acidophilus. aPDT also significantly reduced the expression levels of gtfB and slpA mRNA due to the increased endogenous ROS generation. The findings suggest that Emo@PDL-Exo-mediated aPDT could be a promising antimicrobial approach against cariogenic microorganisms.


Asunto(s)
Antiinfecciosos , Emodina , Exosomas , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Emodina/farmacología , Especies Reactivas de Oxígeno , Simulación del Acoplamiento Molecular , Ligamento Periodontal , Fotoquimioterapia/métodos , Streptococcus mutans/efectos de la radiación , Biopelículas , Células Madre
10.
J Nanobiotechnology ; 22(1): 100, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38462597

RESUMEN

BACKGROUND: Despite the higher sensitivity of melanoma towards ferroptosis and photodynamic therapy (PDT), the lack of efficient ferroptosis inducers and the poor solubility of photosensitizers restrict their synergistic strategies. With unique advantages, carbon dots (CDs) are expected to serve as innovative building blocks for combination therapy of cancers. RESULTS: Herein, an ferroptosis/PDT integrated nanoplatform for melanoma therapy is constructed based on chlorin e6-modified Fe ions-doped carbon dots (Fe-CDs@Ce6). As a novel type of iron-carbon hybrid nanoparticles, the as-prepared Fe-CDs can selectively activate ferroptosis, prevent angiogenesis and inhibit the migration of mouse skin melanoma cells (B16), but have no toxicity to normal cells. The nano-conjugated structures facilitate not only the aqueous dispersibility of Ce6, but also the self-accumulation ability of Fe-CDs@Ce6 within melanoma area without requiring extra targets. Moreover, the therapeutic effects of Fe-CDs@Ce6 are synergistically enhanced due to the increased GSH depletion by PDT and the elevated singlet oxygen (1O2) production efficiency by Fe-CDs. When combined with laser irradiation, the tumor growth can be significantly suppressed by Fe-CDs@Ce6 through cyclic administration. The T2-weighted magnetic resonance imaging (MRI) capability of Fe-CDs@Ce6 also reveals their potentials for cancer diagnosis and navigation therapy. CONCLUSIONS: Our findings indicate the multifunctionality of Fe-CDs@Ce6 in effectively combining ferroptosis/PDT therapy, tumor targeting and MRI imaging, which enables Fe-CDs@Ce6 to become promising biocompatible nanoplatform for the treatment of melanoma.


Asunto(s)
Ferroptosis , Melanoma , Nanopartículas , Fotoquimioterapia , Ratones , Animales , Fotoquimioterapia/métodos , Melanoma/tratamiento farmacológico , Carbono/farmacología , Carbono/química , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Imagen por Resonancia Magnética , Nanopartículas/química
11.
J Refract Surg ; 40(3): e148-e155, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38466760

RESUMEN

PURPOSE: To assess the safety and efficacy of treatment and secondarily determine the topographic changes, visual outcomes, and demarcation line depth after high-fluence pulsed light accelerated cross-linking (ACXL) in pediatric patients (younger than 18 years) with progressive keratoconus. METHODS: This retrospective analysis included 32 eyes (25 children, aged 11 to 18 years), with progressive keratoconus treated with high-energy epithelium-off pulsed light ACXL (7.2 J/cm2, 15 mW/cm2, 12 minutes, 2 seconds on/1 second off). Corrected distance visual acuity (CDVA), Scheimpflug tomography, and anterior optical coherence tomography measurements were recorded preoperatively and 1, 2, and 3 years postoperatively. RESULTS: A total of 32 eyes were included. Significant CDVA improvement, pachymetry, and maximum keratometry reduction were found at all follow-up visits. Mean keratometric values remained stable, and astigmatism showed a mild worsening (< 0.25 D) with statistical significance at 1 and 3 years. Total aberration showed discordant results and coma aberration had a slight improvement without statistical significance. The demarcation line depth was 265 ± 26 µm. Three patients developed mild haze without visual acuity loss. None of the patients underwent a second CXL procedure. CONCLUSIONS: In pediatric patients, high-fluence epithelium-off pulsed light ACXL appears to be a safe and effective procedure to halt the progression of keratoconus, slightly improving the CDVA and keratometric values. [J Refract Surg. 2024;40(3):e148-e155.].


Asunto(s)
Queratocono , Fotoquimioterapia , Humanos , Niño , Queratocono/tratamiento farmacológico , Fármacos Fotosensibilizantes/uso terapéutico , Reticulación Corneal , Riboflavina/uso terapéutico , Estudios Retrospectivos , Rayos Ultravioleta , Topografía de la Córnea , Reactivos de Enlaces Cruzados/uso terapéutico , Colágeno/uso terapéutico , Fotoquimioterapia/métodos , Epitelio
12.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38474220

RESUMEN

Cardiovascular diseases are the third most common cause of death in the world. The most common are heart attacks and stroke. Cardiovascular diseases are a global problem monitored by many centers, including the World Health Organization (WHO). Atherosclerosis is one aspect that significantly influences the development and management of cardiovascular diseases. Photodynamic therapy (PDT) is one of the therapeutic methods used for various types of inflammatory, cancerous and non-cancer diseases. Currently, it is not practiced very often in the field of cardiology. It is most often practiced and tested experimentally under in vitro experimental conditions. In clinical practice, the use of PDT is still rare. The aim of this review was to characterize the effectiveness of PDT in the treatment of cardiovascular diseases. Additionally, the most frequently used photosensitizers in cardiology are summarized.


Asunto(s)
Enfermedades Cardiovasculares , Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Enfermedades Cardiovasculares/tratamiento farmacológico , Fármacos Fotosensibilizantes/uso terapéutico , Neoplasias/tratamiento farmacológico
13.
Photobiomodul Photomed Laser Surg ; 42(4): 314-320, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38536111

RESUMEN

Background: Acinetobacter baumannii, a nosocomial pathogen, poses a major public health problem due to generating resistance to several antimicrobial agents. Antimicrobial photodynamic inactivation (APDI) employs a nontoxic dye as a photosensitizer (PS) and light to produce reactive oxygen species that destroy bacterial cells. The intracellular concentration of PS could be affected by factors such as the function of efflux pumps to emit PS from the cytosol. Objective: To evaluate the augmentation effect of an efflux pump inhibitor, verapamil, three multidrug-resistant A. baumannii were subjected to APDI by erythrosine B (EB). Methods and results: The combination of EB and verapamil along with irradiation at 530 nm induced a lethal effect and more than 3 log colony-forming unit reduction to all A. baumannii strains in planktonic state. In contrast, EB and irradiation alone could produce only a sublethal effect on two of the strains. Conclusions: These data suggest that verapamil increases the intracellular concentration of EB, which potentiates the lethal efficacy of APDI. Verapamil could be applied with EB and green light to improve their antimicrobial efficacy against A. baumannii-localized infections.


Asunto(s)
Acinetobacter baumannii , Farmacorresistencia Bacteriana Múltiple , Fotoquimioterapia , Fármacos Fotosensibilizantes , Verapamilo , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/efectos de la radiación , Verapamilo/farmacología , Fármacos Fotosensibilizantes/farmacología , Fotoquimioterapia/métodos , Eritrosina/farmacología , Humanos
14.
Acta Biomater ; 179: 272-283, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38460931

RESUMEN

Anticancer drugs used for systemic chemotherapy often exhibit off-target toxicity and uncontrolled drug release due to their lack of targeting. To improve the bioavailability of drugs and reduce side effects, we have developed a mixed micelle of nanomedicine composed of two prodrugs with surface modified monoclonal antibody for cancer therapy. In this system, Nimotuzumab was used as targeting ligands of the mixed micelles (named as DCMMs) that is composed of polymer-doxorubicin prodrug (abbreviated as PEG-b-P(GMA-ss-DOX)) and maleimide polyethylene glycol-chlorin e6 (abbreviated as Mal-PEG-Ce6). The mixed micelles modified with Nimotuzumab (named as NTZ-DCMMs) bind to overexpressed EGFR receptors on Hepatoma-22 (H22) cells. Disulfide bonds in PEG-b-P(GMA-ss-DOX) are disrupted in tumor microenvironment, inducing the reduction-responsive release of DOX and leading to tumor cell apoptosis. Simultaneously, Chlorin e6 (Ce6) produced plenty of singlet oxygen (1O2) under laser irradiation to kill tumor cells. In vivo biological distribution and antineoplastic effect experiments demonstrate that NTZ-DCMMs enhanced drug enrichment at tumor sites through targeting function of antibody, dramatically suppressing tumor growth and mitigating cardiotoxicity of drugs. All results prove that NTZ-DCMMs have the ability to actively target H22 cells and quickly respond to tumor microenvironment, which is expected to become an intelligent and multifunctional drug delivery carrier for efficient chemotherapy and photodynamic therapy of hepatoma. STATEMENT OF SIGNIFICANCE: Anticancer drugs used for systemic chemotherapy often exhibit off-target toxicity due to their lack of targeting. Therefore, it's necessary to develop effective, targeted, and collaborative treatment strategies. We construct a mixed micelle of nanomedicine based on two polymer prodrugs and modified with monoclonal antibody on surface for cancer therapy. Under the tumor cell microenvironment, the disulfide bonds of polymer-ss-DOX were broken, effectively triggering DOX release. The photosensitizer Ce6 could generate a large amount of ROS under light, which synergistically promotes tumor cell apoptosis. By coupling antibodies to the hydrophilic segments of polymer micelles, drugs can be specifically delivered. Compared with monotherapy, the combination of chemotherapy and photodynamic therapy can significantly enhance the therapeutic effect of liver cancer.


Asunto(s)
Clorofilidas , Doxorrubicina , Micelas , Nanomedicina , Fotoquimioterapia , Porfirinas , Profármacos , Profármacos/farmacología , Profármacos/química , Profármacos/farmacocinética , Doxorrubicina/farmacología , Doxorrubicina/química , Animales , Fotoquimioterapia/métodos , Línea Celular Tumoral , Nanomedicina/métodos , Porfirinas/química , Porfirinas/farmacología , Porfirinas/farmacocinética , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/farmacocinética , Ratones , Polímeros/química , Polímeros/farmacología , Ratones Endogámicos BALB C , Polietilenglicoles/química , Polietilenglicoles/farmacología , Apoptosis/efectos de los fármacos
15.
Nanoscale ; 16(15): 7547-7558, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38501312

RESUMEN

The concept of combining external medical stimuli with internal functional biomaterials to achieve cancer-oriented treatments is being emergingly developed. Optical and acoustical activations have shown particular promise as non-invasive regulation modalities in cancer treatment and intervention. It is always challenging to leverage the contributions of optical and acoustical stimuli and find appropriate biomaterials to optimally match them. Herein, a type of hybrid nanomicelle (ICG@PEP@HA) containing ICG as a photo/sonosensitizer, an amphiphilic peptide for membrane penetration and hyaluronic acid for cluster determinant 44 (CD44) targeting was fabricated. Triggered by the external stimuli of laser and US irradiation, their photo/sonothermal performance, in vitro reactive oxygen species (ROS) production capability and tumor-targeting efficiency have been systematically evaluated. It was interestingly found that the external stimulus of laser irradiation induced a greater quantity of ROS, which resulted in significant cell apoptosis and tumor growth inhibition in the presence of ICG@PEP@HA. The individual analyses and corresponding rationales have been investigated. Meanwhile, these hybrid nanomicelles were administered into MDA-MB-231 tumor-bearing nude mice for PDT and SDT therapies and their biocompatibility assessment, and a prevailing PDT efficacy and reliable bio-safety have been evidenced based on the hematological analysis and histochemical staining. In summary, this study has validated a novel pathway to utilize these hybrid nanomicelles for laser/US-triggered localized tumor treatment, and the treatment efficiency may be leveraged by different external stimuli sources. It is also expected to give rise to full accessibility to clinical translations for human cancer treatments by means of the as-reported laser/US-nanomicelle combination strategy.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Fotoquimioterapia , Animales , Ratones , Humanos , Ratones Desnudos , Especies Reactivas de Oxígeno/metabolismo , Hipertermia Inducida/métodos , Fotoquimioterapia/métodos , Neoplasias/tratamiento farmacológico , Materiales Biocompatibles/uso terapéutico , Línea Celular Tumoral , Nanopartículas/uso terapéutico
16.
J Mater Chem B ; 12(15): 3710-3718, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38529668

RESUMEN

Meeting the demand for efficient photosensitizers in photodynamic therapy (PDT), a series of iridium(III) complexes decorated with silicane-modified rhodamine (Si-rhodamine) was meticulously designed and synthesized. These complexes demonstrate exceptional PDT potential owing to their strong absorption in the near-infrared (NIR) spectrum, particularly responsive to 808 nm laser stimulation. This feature is pivotal, enabling deep-penetration laser excitation and overcoming depth-related challenges in clinical PDT applications. The molecular structures of these complexes allow for reliable tuning of singlet oxygen generation with NIR excitation, through modification of the cyclometalating ligand. Notably, one of the complexes (4) exhibits a remarkable ROS quantum yield of 0.69. In vivo results underscore the efficacy of 4, showcasing significant tumor regression at depths of up to 8.4 mm. This study introduces a promising paradigm for designing photosensitizers capable of harnessing NIR light effectively for deep PDT applications.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Silanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fotoquimioterapia/métodos , Iridio/farmacología , Iridio/química , Rodaminas , Línea Celular Tumoral , Rayos Infrarrojos
17.
J Mater Chem B ; 12(15): 3764-3773, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38533806

RESUMEN

In this study, we utilized X-ray-induced photodynamic therapy (X-PDT) against triple-negative breast cancer (TNBC) cells. To achieve this, we developed a liposome delivery system that co-loaded protoporphyrin IX (PPIX) and perfluorooctyl bromide (PFOB) in a rational manner. Low-dose X-ray at 2 Gy was employed to activate PPIX for the generation of reactive oxygen species (ROS), and the co-loading of PFOB provided additional oxygen to enhance ROS production. The resulting highly toxic ROS effectively induced cell death in TNBC. In vitro X-PDT effects, including intracellular ROS generation, cell viability, and apoptosis/necrosis assays in TNBC cells, were thoroughly investigated. Our results indicate that the nanocarriers effectively induced X-PDT effects with very low-dose radiation, making it feasible to damage cancer cells. This suggests the potential for the effective utilization of X-PDT in treating hypoxic cancers, including TNBC, with only a fraction of conventional radiotherapy.


Asunto(s)
Fluorocarburos , Hidrocarburos Bromados , Fotoquimioterapia , Protoporfirinas , Neoplasias de la Mama Triple Negativas , Humanos , Fotoquimioterapia/métodos , Liposomas/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo
18.
Anal Chem ; 96(14): 5615-5624, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38544396

RESUMEN

Abnormal lipid droplets (LDs) are known to be intimately bound with the occurrence and development of cancer, allowing LDs to be critical biomarkers for cancers. Aggregation-induced emission luminogens (AIEgens), with efficient reactive oxygen species (ROS) production performance, are prime photosensitizers (PSs) for photodynamic therapy (PDT) with imaging. Therefore, the development of dual-functional fluorescent probes with aggregation-induced emission (AIE) characteristics that enable both simultaneous LD monitoring and imaging-guided PDT is essential for concurrent cancer diagnosis and treatment. Herein, we reported the development of a novel LD-targeting fluorescent probe (TDTI) with AIE performance, which was expected to realize the integration of cancer diagnosis through LD visualization and cancer treatment via PDT. We demonstrated that TDTI, with typical AIE characteristics and excellent photostability, could target LDs with high specificity, which enables the dynamic tracking of LDs in living cells, specific imaging of LDs in zebrafish, and the differentiation of cancer cells from normal cells for cancer diagnosis. Meanwhile, TDTI exhibited fast ROS generation ability (achieving equilibrium within 60 s) under white light irradiation (10 mW/cm2). The cell apoptosis assay revealed that TDTI effectively induced growth inhibition and apoptosis of HeLa cells. Further, the results of PDT in vivo indicated that TDTI had a good antitumor effect on the tumor-bearing mice model. Collectively, these results highlight the potential utility of the dual-functional fluorescent probe TDTI in the integrated diagnosis and treatment of cancer.


Asunto(s)
Neoplasias , Fotoquimioterapia , Humanos , Animales , Ratones , Células HeLa , Colorantes Fluorescentes , Gotas Lipídicas/metabolismo , Fotoquimioterapia/métodos , Especies Reactivas de Oxígeno/metabolismo , Pez Cebra/metabolismo , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico
19.
Int J Pharm ; 654: 123943, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38432451

RESUMEN

Hypoxia as an inherent feature in tumors is firmly associated with unsatisfactory clinical outcomes of photodynamic therapy (PDT) since the lack of oxygen leads to ineffective reactive oxygen species (ROS) productivity for tumor eradication. In this study, an oxidative phosphorylation (OXPHOS) targeting nanoplatform was fabricated to alleviate hypoxia and enhance the performance of PDT by encapsulating IR780 and OXPHOS inhibitor atovaquone (ATO) in triphenylphosphine (TPP) modified poly(ethylene glycol) methyl ether-block-poly(L-lactide-co-glycolide) (mPEG-PLGA) nanocarriers (TNPs/IA). ATO by interrupting the electron transfer in OXPHOS could suppress mitochondrial respiration of tumor cells, economising on oxygen for the generation of ROS. Benefiting from the mitochondrial targeting function of TPP, ATO was directly delivered to its site of action to obtain highlighted effect at a lower dosage. Furthermore, positioning the photosensitizer IR780 to mitochondria, a more vulnerable organelle to ROS, was a promising method to attenuate the spatiotemporal limitation of ROS caused by its short half-life and narrow diffusion radius. As a result, TNPs/IA exhibited accurate subcellular localization, lead to the collapse of ATP production by damaging mitochondrion and elicited significant antitumor efficacy via oxygen-augmented PDT in the HeLa subcutaneous xenograft model. Overall, TNPs/IA was a potential strategy in photodynamic eradication of tumors.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Especies Reactivas de Oxígeno , Fosforilación Oxidativa , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Nanopartículas/ultraestructura , Oxígeno , Hipoxia/tratamiento farmacológico , Línea Celular Tumoral
20.
Front Immunol ; 15: 1335920, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481994

RESUMEN

Photodynamic therapy (PDT) is a therapeutic approach that has gained significant attention in recent years with its promising impact on the immune system. Recent studies have shown that PDT can modulate both the innate and adaptive arms of the immune system. Currently, numerous clinical trials are underway to investigate the effectiveness of this method in treating various types of cancer, as well as to evaluate the impact of PDT on immune system in cancer treatment. Notably, clinical studies have demonstrated the recruitment and activation of immune cells, including neutrophils, macrophages, and dendritic cells, at the treatment site following PDT. Moreover, combination approaches involving PDT and immunotherapy have also been explored in clinical trials. Despite significant advancements in its technological and clinical development, further studies are needed to fully uncover the mechanisms underlying immune activation by PDT. The main objective of this review is to comprehensively summarize and discuss both ongoing and completed studies that evaluate the impact of PDT of cancer on immune response.


Asunto(s)
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Neoplasias/tratamiento farmacológico , Neutrófilos , Inmunoterapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...